lunes, 26 de junio de 2017

Rozamiento o Fricción

Rozamiento O Fricción

La fuerza de fricción o la fuerza de rozamiento es la fuerza que existe entre dos superficies en contacto, que se opone al movimiento relativo entre ambas superficies (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del deslizamiento (fuerza de fricción estática). Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. 

Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, sino que forme un ángulo con la normal N (el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.



Tipos de Fricción
Existen dos tipos de rozamiento o fricción, la fricción estática (Fe) y la fricción dinámica (Fd). El primero es la resistencia que se debe superar para poner en movimiento un cuerpo con respecto a otro que se encuentra en contacto. El segundo, es la resistencia, de magnitud considerada constante, que se opone al movimiento pero una vez que este ya comenzó. En resumen, lo que diferencia a un roce con el otro, es que el estático actúa cuando los cuerpos están en reposo relativo en tanto que el dinámico lo hace cuando ya están en movimiento.
La fuerza de fricción estática, necesaria para vencer la fricción homóloga, es siempre menor o igual al coeficiente de rozamiento entre los dos objetos (número medido empíricamente y que se encuentra tabulado) multiplicado por la fuerza normal. La fuerza cinética, en cambio, es igual al coeficiente de rozamiento dinámico, denotado por la letra griega , por la normal en todo instante.




Primera Y Segunda Condición del Equilibrio

Primera Condición

Diremos que un cuerpo se encuentra en equilibrio de traslación cuando la fuerza resultante de todas las fuerzas que actúan sobre él es nula: ∑ F = 0.


Desde el punto de vista matemático, en el caso de fuerzas coplanarias, se tiene que cumplir que la suma aritmética de las fuerzas o de sus componentes que están el la dirección positiva del eje X sea igual a las componentes de las que están en la dirección negativa. De forma análoga, la suma aritmética de las componentes que están en la dirección positiva del eje Y tiene que ser igual a las componentes que se encuentran en la dirección negativa:

4

Por otro lado, desde el punto de vista geométrico, se tiene que cumplir que las fuerzas que actúan sobre un cuerpo en equilibrio tienen un gráfico con forma de polígono cerrado; ya que en el gráfico de las fuerzas, el origen de cada fuerza se representa a partir del extremo de la fuerza anterior, tal y como podemos observar en la siguiente imagen.

5


Segunda condición de equilibrio: 
Por otro lado, diremos que un cuerpo está en equilibrio de rotación cuando la suma de todas las fuerzas que se ejercen en él respecto a cualquier punto es nula. O dicho de otro modo, cuando la suma de los momentos de torsión es cero.
6

En este caso, desde el punto de vista matemático, y en el caso anterior en el que las fuerzas son coplanarias; se tiene que cumplir que la suma de los momentos o fuerzas asociados a las rotaciones antihorarias (en el sentido contrario de las agujas del reloj), tiene que ser igual a la suma aritmética de los momentos o fuerzas que están asociados a las rotaciones horarias (en el sentido de las agujas del reloj):
Un cuerpo se encuentra en equilibrio traslacional y rotacional cuando se verifiquen de forma simultánea las dos condiciones de equilibrio. Estas condiciones de equilibrio se convierten, gracias al álgebra vectorial, en un sistema de ecuaciones cuya solución será la solución de la condición del equilibrio.









Leyes de Newton


PRIMERA LEY O DE INERCIA
La primera ley del movimiento rebate la idea aristotélica de que un cuerpo solo puede mantenerse en movimiento si se le aplica una fuerza.

Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuya resultante no sea nula. Newton toma en consideración, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como tal a la fricción.

Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuya resultante no sea nula. 
Newton toma en consideración, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como tal a la fricción.

El enunciado fundamental que podemos extraer de la ley de Newton es que:

{\displaystyle \sum \mathbf {F} =0\;\Leftrightarrow \;{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=0.}

Gifbola1.gif


SEGUNDA LEY O LEY FUNDAMENTAL DE LA DINÁMICA

La Segunda Ley de Newton expresa que:

El cambio de movimiento es directamente proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

Esta ley se encarga de cuantificar el concepto de fuerza. La aceleración que adquiere un cuerpo es proporcional a la fuerza neta aplicada sobre el mismo. La constante de proporcionalidad es la masa del cuerpo (que puede ser o no ser constante). Entender la fuerza como la causa del cambio de movimiento y la proporcionalidad entre la fuerza impresa y el cambio de la velocidad de un cuerpo es la esencia de esta segunda ley.

Aplicaciones de la segunda ley de Newton


Entre las posibles aplicaciones de la Segunda Ley de Newton, se pueden destacar:

Caída libre: es un movimiento que se observa cuando un objeto se deja caer desde una cierta altura sobre la superficie de la tierra. Para estudiar el movimiento se elige un sistema de coordenadas donde el origen del eje y está sobre esta última. En este sistema tanto la velocidad de caída como la aceleración de la gravedad tienen signo negativo. En el ejemplo representado, se supone que el objeto se deja caer desde el reposo, pero es posible que caiga desde una velocidad inicial distinta de cero.

Caida-libre.jpg


  • Péndulo simple: partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable. Si la partícula se desplaza a una posición θ0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar. El péndulo describe una trayectoria circular, un arco de una circunferencia de radio l. Las fuerzas que actúan sobre la partícula de masa m son dos, el peso y la tensión T del hilo.





TERCERA LEY O PRINCIPIO DE ACCIÓN Y REACCIÓN.

La tercera ley de Newton establece que siempre que un objeto ejerce una fuerza sobre un segundo objeto, este ejerce una fuerza de igual magnitud y dirección pero en sentido opuesto sobre el primero. Con frecuencia se enuncia así: A cada acción siempre se opone una reacción igual pero de sentido contrario. En cualquier interacción hay un par de fuerzas de acción y reacción situadas en la misma dirección con igual magnitud y sentidos opuestos. La formulación original de Newton es:

Con toda acción ocurre siempre una reacción igual y contraria: quiere decir que las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.


Esta tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otra manera por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto. Si dos objetos interaccionan, la fuerza F12, ejercida por el objeto 1 sobre el objeto 2, es igual en magnitud con misma dirección pero sentidos opuestos a la fuerza F21 ejercida por el objeto 2 sobre el objeto 1:

{\displaystyle \mathbf {F} _{12}=-\mathbf {F} _{21}}

Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c". Este principio relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, esta permite enunciar los principios de conservación del momento lineal y del momento angular.
























































Problemas deTrabajo, Energia y Equilibrio

Problemas de Equilibrio
Un jugador de béisbol toma un bate de 36 onzas (peso = 10 Newton) con una mano en el punto O  El bate esta en equilibrio. El peso del bate actúa a lo largo de una recta de 60 cm. A la derecha de O. Determine la fuerza y el par de torsión ejercidos por el jugador sobre el bate alrededor de un eje que pasa por O.






2.Escriba las condiciones necesarias para equilibrio del cuerpo que se muestra. Tome el origen de la Ecuación del par de torsión en el punto o.





Problemas de Trabajo

Problema 1

Un cuerpo de 4 kg de masa se mueve hacia arriba en un plano inclinado de 20º con respecto a la horizontal. Sobre el cuerpo actúan las siguientes fuerzas: una fuerza horizontal de 80 N, una fuerza paralela al plano de 100 N favoreciendo el movimiento, una fuerza de fricción de 10 N que se opone al movimiento. El cuerpo se traslada 20 m a lo largo del plano inclinado a velocidad constante. Calcular:
El trabajo de cada fuerza y el trabajo total.
La resultante y el trabajo de la resultante.

En la figura, se muestra la gráfica de la fuerza aplicada a un móvil de 2 kg de masa en función del desplazamiento. Sabiendo que su velocidad inicial (en x=0) es de 5 m/s, calcular su velocidad en las posiciones x = 4, 11, 17, 21..

Problemas de Energia





Equilibrio, Trabajo, Energía y Potencia

EQUILIBRIO

Se denomina equilibrio al estado en el cual se encuentra un cuerpo cuando las fuerzas que actúan sobre el se compensan y anulan recíprocamente. Cuando un cuerpo está en equilibrio estático, si se lo mantiene así, sin ningún tipo de modificación, no sufrirá aceleración de traslación o rotación, en tanto, si el mismo se desplaza levemente, pueden suceder tres cosas: que el objeto regrese a su posición original (equilibrio estable), el objeto se aparte aún más de su posición original (equilibrio inestable) o que se mantenga en su nueva posición (equilibrio indiferente o neutro).

En el campo de la física y la ingeniería encontramos tres tipos de equilibrios, el termodinámico que se refiere a la situación de un sistema físico en el cual sus factores externos y procesos internos no producen cambios de temperatura o presión. El químico se da cuando una reacción química de transformación se produce al mismo tiempo que su inversa y entonces no hay cambios en los compuestos. Y por último, el mecánico, es cuando las sumas de las fuerzas sobre todas las partes se anulan.

Para la educación física, el equilibrio o sentido de equilibrio, es una de las aptitudes más preciadas a alcanzar, porque el dominio de este sentido es lo que le permitirá a los atletas que estén realizando alguna acrobacia, no desplomarse en el piso y golpearse.

Resultado de imagen para equilibrio fisica



Trabajo
 Es el producto de una fuerza aplicada sobre un cuerpo y del desplazamiento del cuerpo en la dirección de esta fuerza. Mientras se realiza trabajo sobre el cuerpo, se produce una transferencia de energía al mismo, por lo que puede decirse que el trabajo es energía en movimiento.


El trabajo es una magnitud física escalar que se representa con la letra W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.
Por lo tanto. El trabajo es igual al producto de la fuerza por la distancia y por el coseno del ángulo que existe entre la dirección de la fuerza y la dirección que recorre el punto o el objeto que se mueve.
Puede calcularse el trabajo que una fuerza realiza a lo largo de una trayectoria curvilínea general. Para ello basta saber que el trabajo que la fuerza realiza en un elemento diferencial ds de la trayectoria.
Entonces, para obtener el trabajo a lo largo de toda la trayectoria bastará con integrar a lo largo de la misma entre los puntos inicial y final de la curva. Pero hay que tener en cuenta también, que la dirección de la fuerza puede o no coincidir con la dirección sobre la que se está moviendo el cuerpo. En caso de no coincidir, hay que tener en cuenta el ángulo que separa estas dos direcciones.

Trabajo fisica.jpeg




Energía


La energía es la capacidad de los cuerpos para realizar un trabajo y producir cambios en ellos mismos o en otros cuerpos. Es decir, la energía es la capacidad de hacer funcionar las cosas.
La unidad de medida que utilizamos para cuantificar la energía es el Joule (J).

Tipos de energía

La energía se manifiesta de diferentes maneras, recibiendo así diferentes denominaciones según las acciones y los cambios que puede provocar.
Encontramos los siguientes tipos de energía:

Energía mecánica

La energía mecánica relacionada con la posición y el movimiento del cuerpo, y que se divide en estas dos formas:
  • Energía cinética, que se manifiesta cuando los cuerpos se mueven. Es decir, es la energía asociada a la velocidad de cada cuerpo. Se calcula con la fórmula:
    • c= ½ m • v 2
    • Donde m es la masa (Kg), v la velocidad (m/s) y E c la energía cinética (J=Kg·m 2 /s 2 )
  • Energía potencial, que hace referencia a la posición que ocupa una masa en el espacio. Su fórmula es:
    • p= m • g • h
    • Donde m es la masa (Kg), g la gravedad de la Tierra (9,81 m/s 2 ), h= la altura (m) y E p la energía potencial (J=Kg·m 2 /s 2 ).
La energía mecánica es la suma de la energía cinética y la energía potencial de un cuerpo. Su fórmula es:
  • m = E p + E c
  • Donde E m es la energía mecánica (J), E p la energía potencial (J) y E c la energía cinética (J).

Energía interna

La energía interna se manifiesta a partir de la temperatura. Cuanto más caliente esté un cuerpo, más energía tendrá.

Energía eléctrica

La energía eléctrica está relacionada con la corriente eléctrica. Es decir, en un circuito en el que cada extremo tiene una diferencia de potencial diferente.

Energía térmica

Se asocia con la cantidad de energía que pasa de un cuerpo caliente a otro más frío manifestándose mediante elcalor.

Energía electromagnética 

Esta energía se atribuye a la presencia de un campo electromagnético.
Las radiaciones que provoca el Sol son un ejemplo de ondas electromagnéticas que se manifiestan en forma de luz, radiación infrarroja u ondas de radio.  

Energía química

La energía química se manifiesta en determinadas reacciones químicas.

La energía nuclear

Ésta se produce cuando los núcleos de los átomos se rompen (fisión) o se unen (fusión).
Resultado de imagen para energia fisica


Potencia
PotenciaLa potencia es la cantidad de trabajo que se realiza por unidad de tiempo. Puede asociarse a la velocidad de un cambio de energía dentro de un sistema, o al tiempo que demora la concreción de un trabajo. Por lo tanto, es posible afirmar que la potencia resulta igual a la energía total dividida por el tiempo.

Se puede indicar que la potencia es la fuerza, el poder o la capacidad para conseguir algo. Por ejemplo: “Batistuta era un delantero con mucha potencia que siempre marcaba goles”“El nuevo disco de la banda sueca muestra la potencia de su nuevo baterista”“Creo que si golpeaba el balón con más potencia, hubiera conseguido otro punto”.
Resultado de imagen para potencia fisica